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Abstract

The Compressive Sensing (CS) framework aims to ease the burden on analog-to-digital con-
verters (ADCs) by reducing the sampling rate required to acquire and stably recover sparse
signals. Practical ADCs not only sample but also quantize each measurement to a finite number
of bits; moreover, there is an inverse relationship between the achievable sampling rate and the
bit depth. In this paper, we investigate an alternative CS approach that shifts the emphasis
from the sampling rate to the number of bits per measurement. In particular, we explore the
extreme case of 1-bit CS measurements, which capture just their sign. Our results come in two
flavors. First, we consider ideal reconstruction from noiseless 1-bit measurements and provide
a lower bound on the best achievable reconstruction error. We also demonstrate that a large
class of measurement mappings achieve this optimal bound. Second, we consider reconstruc-
tion robustness to measurement errors and noise and introduce the Binary ε-Stable Embedding
(BεSE) property, which characterizes the robustness measurement process to sign changes. We
show the same class of matrices that provide optimal noiseless performance also enable such a
robust mapping. On the practical side, we introduce the Binary Iterative Hard Thresholding
(BIHT) algorithm for signal reconstruction from 1-bit measurements that offers state-of-the-art
performance.

1 Introduction

Recent advances in signal acquisition theory have led to significant interest in alternative sampling
methods. Specifically, conventional sampling systems rely on the Shannon sampling theorem that
states that signals must be sampled uniformly at the Nyquist rate, i.e., a rate twice their bandwidth.
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However, the compressive sensing (CS) framework describes how to reconstruct a signal x ∈ RN
from the linear measurements

y = Φx, (1)

where Φ ∈ RM×N with M < N is an underdetermined measurement system [1, 2]. It is possible
to design a physical sampling system Φ̄ such that y = Φx = Φ̄(x(t)) where x is a vector of
Nyquist-rate samples of a bandlimited signal x(t), t ∈ R. In this case, (1) translates to low, sub-
Nyquist sampling rates, providing the framework’s axial significance: CS enables the acquisition and
accurate reconstruction of signals that were previously out of reach, limited by hardware sampling
rates [3] or number of sensors [4].

Although inversion of (1) seems ill-posed, it has been demonstrated that K-sparse signals, i.e.,
x ∈ ΣK where ΣK := {x ∈ RN : ‖x‖0 := |supp(x)| ≤ K}, can be reconstructed exactly [1, 2]. To
do this, we could näıvely solve for the sparsest signal that satisfies (1),

x∗ = argmin
x∈RN

‖x‖0 s.t. y = Φx; (RCS)

however, this non-convex program exhibits combinatorial complexity in the size of the problem [5].
Instead, we solve Basis Pursuit (BP) by relaxing the objective in (RCS) to the `1-norm; the result
is a convex, polynomial-time algorithm [6]. A key realization is that, under certain conditions on
Φ, the BP solution will be equivalent to that of (RCS) [1]. This basic reconstruction framework
has been expanded to include numerous fast algorithms as well as provably robust algorithms
for reconstruction from noisy measurements [7–11]. Reconstruction can also be performed with
iterative and greedy methods [12–14].

Reconstruction guarantees for BP and other algorithms are often demonstrated for Φ that are
endowed with the restricted isometry property (RIP), the sufficient condition that the norm of the
measurements is close to the norm of the signal for all sparse x [7].1 This can be expressed, in
general terms, as a δ-stable embedding. Let δ ∈ (0, 1) and X,S ⊂ RN . We say the mapping Φ is a
δ-stable embedding of X,S if

(1− δ)‖x− s‖22 ≤ ‖Φx− Φs‖22 ≤ (1 + δ)‖x− s‖22, (2)

for all x ∈ X and s ∈ S. The RIP requires that (2) hold for all x, s ∈ ΣK ; that is, it is a stable
embedding of sparse vectors. A key result in the CS literature is that, if the coefficients of Φ are
randomly drawn from a sub-Gaussian distribution, then Φ will satisfy the RIP with high probability
as long as M ≥ CδK log(N/K), for some constant Cδ [15, 16]. Several hardware inspired designs
with only a few randomized components have also been shown to satisfy this property [3, 17–19].

In practice, CS measurements must be quantized, i.e., each measurement is mapped from a real
value (over a potentially infinite range) to a discrete value over some finite range. For example, in
uniform quantization, a measurement is mapped to one of 2B distinct values, where B denotes the
number of bits per measurement. Quantization is an irreversible process that introduces error in the
measurements. One way to account for quantization error is to treat it as bounded noise and employ
robust reconstruction algorithms. Alternatively, we might try to reduce the error by choosing the
most efficient quantizer for the distribution of the measurements. Several reconstruction techniques
that specifically address CS quantization have also been proposed [20–25].

1The RIP is in fact not needed to demonstrate exact reconstruction guarantees in noiseless settings, however it
proves quite useful for establishing robust reconstruction guarantees in noise.
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While quantization error is a minor inconvenience, fine quantization invokes a more burden-
some, yet often overlooked source of adversity: in hardware systems, it is the primary bottleneck
limiting sample rates [26, 27]. In other words, the ADC is beholden to the quantizer. First, quan-
tization significantly limits the maximum speed of the analog-to-digital converter (ADC), forcing
an exponential decrease in sampling rate as the number of bits is increased linearly [27]. Second,
the quantizer is the primary power consumer in an ADC. Thus, more bits per measurement di-
rectly translates to slower sampling rates and increased ADC costs. Third, fine quantization is
more susceptible to non-linear distortion in the ADC electronics, requiring explicit treatment in
the reconstruction [28]. As we have seen, the CS framework provides one mechanism to alleviate
the quantization bottleneck by reducing the ADC sampling rate. Is it possible to extend the CS
framework to mitigate this problem directly in the quantization domain by reducing the number
of bits per measurement (bit-depth) instead?

In this paper we concretely answer this question in the affirmative. We consider an extreme
quantization; just one bit per CS measurement, representing its sign. The quantizer is thus reduced
to a simple comparator that tests for values above or below zero, enabling extremely simple, efficient,
and fast quantization. A 1-bit quantizer is also more robust to a number of commonly encountered
non-linear distortions in the input electronics, as long as they preserve the sign of the measurements.

It is not obvious that the signs of the CS measurements retain enough information for signal
reconstruction; for example, it is immediately clear that the scale (absolute amplitude) of the signal
is lost. Nonetheless, there is strong empirical evidence that signal reconstruction is possible [28–31].
In this paper we develop strong theoretical reconstruction and robustness guarantees, in the same
spirit as neoclassical guarantees provided in CS by the RIP.

We briefly describe the 1-bit CS framework proposed in [29]. Measurements of a signal x ∈ RN
are computed via

ys = A(x) := sign (Φx). (3)

Thus, the measurement operator A(·) is a mapping from RN to the Boolean cube2 BM := {−1, 1}M .
At best, we hope to recover signals x ∈ Σ∗K := {x ∈ SN−1 : ‖x‖0 ≤ K} where SN−1 := {x ∈ RN :
‖x‖2 = 1} is the unit hyper-sphere of dimension N . We restrict our attention to sparse signals
on the unit sphere since, as previously mentioned, the scale of the signal has been lost during
the quantization process. To reconstruct, we enforce consistency on the signs of the estimate’s
measurements, i.e., that A(x∗) = A(x). Specifically, we define a general non-linear reconstruction
algorithm ∆1bit(ys,Φ,K) such that, for x∗ = ∆1bit(ys,Φ,K), the solution x∗ is

(i) sparse, i.e., satisfies ‖x∗‖0 ≤ K = ‖x‖0; and

(ii) consistent, i.e., satisfies A(x∗) = ys = A(x).

With (RCS) from CS as a guide, one candidate program for reconstruction is of course

x∗ = argmin
x∈SN−1

‖x‖0 s.t. ys = sign (Φx). (R1BCS)

Although the parameter K is not explicit in (R1BCS), the property (i) above holds because x is a
feasible point of the constraint.

2Generally, the m-dimensional Boolean cube is defined as {0, 1}M . Without loss of generality, we use {−1, 1}M
instead.
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Since (R1BCS) is computationally intractable, [29] proposes a relaxation that replaces the objec-
tive with the `1-norm and enforces consistency via a linear convex constraint. However, the resulting
program remains non-convex due to the the unit-sphere requirement. Be that as it may, several
optimization algorithms have been developed for the relaxation, as well as a greedy algorithm in-
spired by the same ideas [29–31]. While previous empirical results from these algorithms provide
motivation for the validity of this 1-bit framework, there have been few analytical guarantees to
date.

The primary contribution of this paper is a rigorous analysis of the 1-bit CS framework. We
provide two flavors of results. First, we determine a lower bound on reconstruction performance
from all possible mappings A with the reconstruction algorithm ∆1bit, i.e., the best achievable
performance of this 1-bit CS framework. We further demonstrate that if the elements of Φ are
drawn randomly from Gaussian distribution or its rows are drawn uniformly from the unit sphere,
then the solution to ∆1bit will have bounded error on the order of the optimal lower bound. Second,
we provide conditions on A that enable us to characterize the reconstruction performance even when
some of the measurement signs have changed (e.g., due to noise in the measurements). In other
words, we derive the conditions under which robust reconstruction from 1-bit measurements can
be achieved. We do so by demonstrating that A is a stable embedding of sparse signals, similar to
the RIP. We apply these stable embedding results to the cases where we have noisy measurements
and signals that are not strictly sparse. Our guarantees demonstrate that the 1-bit CS framework
is on sound footing and provide a first step toward analysis of the relaxed 1-bit techniques used in
practice.

To develop robust reconstruction guarantees, we propose a new tool, the binary ε-stable em-
bedding (BεSE), to characterize 1-bit CS systems. The BεSE implies that the normalized angle
between any sparse vectors in SN−1 is close to the normalized Hamming distance between their
1-bit measurements. We demonstrate that the same class of random A as above exhibit this prop-
erty when M ≥ CεK logN (where Cε is some constant). Thus remarkably, there exist A such that
the BεSE holds when both the number of measurements M is smaller than the dimension of the
signal N and the measurement bit-depth is at minimum.

As a complement to our theoretical analysis, we introduce a new 1-bit CS reconstruction algo-
rithm, Binary Iterative Hard Thresholding (BIHT). Via simulations, we demonstrate that BIHT
yields a significant improvement in both reconstruction error as well as consistency, as compared
with previous algorithms. To gain intuition about the behavior of BIHT, we explore the way that
this algorithm enforces consistency and compare and contrast it with previous approaches. Perhaps
more important than the algorithm itself is the discovery that the BIHT consistency formulation
provides a significantly better feasible solution in noiseless settings, as compared with previous
algorithms. Finally, we provide a brief explanation regarding why this new formulation achieves
better solutions, and its connection with results in the machine learning literature.

In addition to benchmarking the performance of BIHT, our simulations demonstrate that many
of the theoretical predictions that arise from our analysis (such as the error rate as a function of the
number of measurements or the error rate as a function of measurement Hamming distance), are
actually exhibited in practice. This implies that our theoretical analysis is accurately explaining
the true behavior of the framework.

The remainder of this paper is organized as follows. In Section II, we develop performance
results for 1-bit CS in the noiseless setting. Specifically we develop a lower bound on reconstruction
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(a) (b)

Figure 1: (a) The 8 orthants in R3. (b) Intersection of orthants by a 2-dimensional subspace. At most 6 of the 8
available orthants are intersected.

performance as well as provide the guarantee that Gaussian matrices enable this performance. In
Section III we introduce the notion of a BεSE for the mapping A and demonstrate that Gaussian
matrices facilitate this property. We also expand reconstruction guarantees for measurements
with Gaussian noise (prior to quantization) and non-sparse signals. To make use of these results
in practice, in Section IV we present the BIHT algorithm for practical 1-bit reconstruction. In
Section V we provide simulations of BIHT to verify our claims. In Section VI we conclude with
a discussion about implications and future extensions. To facilitate the flow and the description,
most of our proofs are provided in the appendices.

2 Noiseless Reconstruction Performance

2.1 Reconstruction performance lower bounds

In this section, we seek to provide guarantees on the reconstruction error from 1-bit CS measure-
ments. Before analyzing this performance from a specific mapping A with the consistent sparse
reconstruction algorithm ∆1bit(ys,Φ,K), it is instructive to determine the best achievable perfor-
mance from measurements acquired using any mapping. Thus, in this section we seek a lower
bound on the reconstruction error.

We develop the lower bound on the reconstruction error based on how well the quantizer exploits
the available measurement bits. A distinction we make in this section is that of measurement bits,
which is the number of bits acquired by the measurement system, versus information bits, which
represent the true amount of information carried in the measurement bits. Our analysis follows
similar ideas to that in [32, 33], adapted to sign measurements.

We first examine how 1-bit quantization operates on the measurements. Specifically, we consider
the orthants of the measurement space. An orthant in RM is the set of vectors such that all the
vector’s coefficients have the same sign pattern

Os = {x | signx = s},
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where s is a vector of ±1. Any M -dimensional space is partitioned to 2M orthants. Figure 1(a)
shows the 8 orthants of R3 as an example. Since 1-bit quantization only preserves the signs of the
measurements, it encodes in which measurement space orthant the measurements lie. Thus, each
available quantization point corresponds to an orthant in the measurement space. Any unquan-
tized measurement vector Φx that lies in an orthant of the measurement space will quantize to
the corresponding quantization point of that orthant and cannot be distinguished from any other
measurement vector in the same orthant. To obtain a lower bound on the reconstruction error,
we begin by bounding the number of quantization points (or equivalently the number of orthants)
that are used to encode the signal.

While there are generally 2M orthants in the measurement space, the space formed by measuring
all sparse signals occupies a small subset of the available orthants. We determine the number of
available orthants that can be intersected by the measurements in the following lemma:

Lemma 1. Let x ∈ S :=
⋃L
i=1 Si belong to a union of L subspaces Si ⊂ RN of dimension K, and

let M 1-bit measurements ys be acquired via the mapping A : RN → BM as defined in (3). Then
the measurements ys can effectively use at most L

(M
K

)
2K quantization points, i.e., carry at most

K log2(eLM/K) information bits.

Proof. A K-dimensional subspace in an M dimensional space cannot lie in all the 2M available
octants. For example, as shown in Fig. 1(b), a 2-dimensional subspace of a 3-dimensional space
can intersect at most 6 of the available octants. In Appendix A, we demonstrate that one arbitrary
K-dimensional subspace in an M -dimensional space intersects at most

(M
K

)
2K orthants of the 2M

available. Since Φ is a linear operator, any K-dimensional subspace Si in the signal space RN is
mapped through Φ to a subspace S ′i = ΦSi ⊂ RM that is also at most K-dimensional and therefore
follows the same bound. Thus, if the signal of interest belongs in a union S :=

⋃L
i=1 Si of L such

K-dimensional subspaces, then Φx ∈ S ′ :=
⋃L
i=1 S ′i, and it follows that at most L

(M
K

)
2K orthants

are intersected. This means that at most L
(M
K

)
2K effective quantization points can be used, i.e.,

at most K log2(eLM/K) information bits can be obtained. �

Since K-sparse signals in any basis Ψ ∈ RN×N belong to a union of at most
(N
K

)
subspaces

in RN , using Lemma 1 we can obtain the following corollary.3

Corollary 1. Let x = Ψα ∈ RN be K-sparse in a certain basis Ψ ∈ RN×N , i.e., α ∈ ΣK . Then
the measurements ys = A(x) can effectively use at most

(N
K

)(M
K

)
2K 1-bit quantization points, i.e,

carry at most 2K log2(e
√
NM/K) information bits.

The set of signals of interest to be encoded is the set of unit-norm K-sparse signals Σ∗K . Since
unit-norm signals of a K-dimensional subspace form a K-dimensional unit sphere in that subspace,
Σ∗K is a union of

(N
K

)
such unit spheres. The Q =

(N
K

)(M
K

)
2K available quantization points partition

Σ∗K into Q smaller sets, each of which contains all the signals that quantize the same point.

To develop the lower bound on the reconstruction error we examine the optimal such partition,
with respect to the worst-case error, given the number of quantization points used. The mea-
surement and reconstruction process maps each signal in Σ∗K to a finite set of quantized signals
Q ⊂ Σ∗K , |Q| = Q. At best this map ensures that the worst case reconstruction error is minimized,

3This corollary is easily adaptable to a redundant basis Ψ ∈ RN×D with D ≥ N .
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i.e.,

εopt = max
x∈Σ∗K

min
q∈Q
‖x− q‖2, (4)

where εopt denotes the worst-case quantization error and q each of the available quantization points.
The optimal lower bound is achieved by designing Q to minimize (4) without considering whether
the measurement and reconstruction process actually achieve this design. Thus, designing the set
Q becomes a set covering problem.

Using this intuition and Lemma 1, Appendix A proves the following statement about a set of
unit-norm signals in a union of L, K-dimensional subspaces, specifically x ∈ Σ∗K .

Theorem 1. Let the mapping A : RN → BM and measurements ys be defined as in (3) and let
x ∈ Σ∗K . Then the estimate from the reconstruction algorithm ∆1bit(ys,Φ,K) has error defined by
(4) of at least

εopt ≥
K

2eM
= Ω

Å
K

M

ã
.

Thus, the worst-case error cannot decay at a rate faster than Ω(1/M) as a function of the number
measurements, no matter what reconstruction algorithm is used. The bound in the theorem is
independent of L, but similarly to the relation between Lemma 1 and Corollary 1, K-sparse signals
are a special case with L =

(N
K

)
.

This result assumes noiseless acquisition and provides no guarantees of robustness and noise
resiliency. This is in line with existing results on scalar quantization in oversampled representations
and CS that state that the distortion due to scalar quantization of noiseless measurements cannot
decrease faster than the inverse of the measurement rate [32–36]. To improve the rate vs. distortion
trade-off, alternative quantization methods must be used, such as Sigma-Delta quantization [37–43]
or non-monotonic scalar quantization [44].

Theorem 1 bounds the best possible performance of a consistent reconstruction over all possible
mappings A. However, it is straightforward to construct mappings A that do not behave as the
lower bound suggests. In the next section we identify one class of matrices such that the mapping A
admits an almost optimal upper bound on the reconstruction error from a general algorithm ∆1bit.

2.2 Achievable performance via random projections

In this section we describe a class of matrices Φ such that the consistent sparse reconstruction
algorithm ∆1bit(ys,Φ,K) can indeed achieve error decay rates of optimal order, described by The-
orem 1, with the number of measurements growing linear in the sparsity K and logarithmically
in the dimension N , as is required in conventional CS. We first focus our analysis on Gaussian
matrices, i.e., Φ such that each element φi,j is randomly drawn i.i.d. from the standard Gaussian
distribution, N (0, 1). In the rest of the paper, we use the short notation Φ ∼ NM×N (0, 1) for char-
acterizing such matrices, and we write ϕ ∼ NN×1(0, 1) for describing equivalent random vectors in
RN (e.g., the rows of Φ). For these matrices Φ, we prove the following in Appendix A.

Theorem 2. Let Φ be matrix generated as Φ ∼ NM×N (0, 1), and let the mapping A : RN → BM
be defined as in (3). Fix 0 ≤ η ≤ 1 and εo > 0. If the number of measurements is

M ≥ 1
εo

Ä
2K log(N) + 4K log(16

εo
) + log 1

η

ä
, (5)
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then for all x, s ∈ Σ∗K we have that

‖x− s‖2 > εo ⇒ A(x) 6= A(s), (6)

or equivalently
A(x) = A(s) ⇒ ‖x− s‖2 ≤ εo,

with probability higher than 1− η.

The Theorem demonstrates that if we use Gaussian matrices in the mapping A, then, given
a fixed probability level η, the reconstruction algorithm ∆1bit(ys,Φ,K) will recover signals with
optimal error order

εo = O
ÄÄ

K
M

ä1−α
logN

ä
,

for arbitrarily small α > 0; the presence of the log(1/ε0) term in (5) prevents us from setting α = 0.

A similar result has been very recently shown for sign measurements of non-sparse signals
in the context of quantization using frame permutations [45]. Specifically, it has been shown
that reconstruction from sign measurements of signals can be achieved (almost surely) with a
O((1/M)1−α) error rate decay for arbitrarily small α > 0. Our main contribution here is extending
this result to K-sparse vectors in RN . Our results, in addition to introducing the almost linear
dependence on K, also show that if the signal is sparse then we pay a logarithmic penalty in
N . This is consistent with results in CS, but seems not to be necessary from the lower bound
in the previous section. We will see in Section V that for Gaussian matrices, the optimal error
behavior is empirically exhibited on average. Finally, we note that for a constant ε0, the number
of measurements required to guarantee (6) is M = O(K logN/K), nearly the same as order in
conventional CS.

We note a few minor extensions of the Theorem. We can multiply the rows of Φ with a positive
scalar without changing the signs of the measurements. By normalizing the rows of the Gaussian
matrix, we obtain a matrix with rows drawn uniformly from the unit `2 sphere in RN . It is thus
straightforward to extend the Theorem to such matrices with such rows as well. Furthermore, note
that these projections are “universal,” meaning that the theorem remains valid for sparse signals
in Ψ, i.e., for x, s belonging to Σ∗Ψ,K := {u = Ψα ∈ RN : α ∈ Σ∗K}. This is true since for any

orthonormal basis Ψ ∈ RN×N , Φ′ = ΦΨ ∼ NM×N (0, 1) when Φ ∼ NM×N (0, 1).

We can also view the binary measurements as a hash or a sketch of the signal. With this
interpretation of the result we guarantee with high probability that no sparse vectors with Euclidean
distance greater than εo will “hash” to the same binary measurements. In fact, similar results play a
key role in locality sensitive hashing (LSH), a technique that aims to efficiently perform approximate
nearest neighbors searches from quantized projections [46–49]. Most LSH results examine the
performance on point-clouds of a discrete number of signals instead of the infinite subspaces that
we explore in this paper. Furthermore, the primary goal of the LSH is to preserve the structure
of the nearest neighbors with high probability. Instead, in this paper we are concerned with the
ability to reconstruct the signal from the hash, as well as the robustness of this reconstruction to
measurement noise and signal model mismatch. To enable these properties, we require a property
of the mapping A that preserves the structure (geometry) of the entire signal set. Thus, in the next
section we seek an embedding property of A that preserves geometry for the set of sparse signals
and thus ensures robust reconstruction.
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3 Acquisition and Reconstruction Robustness

3.1 Binary ε-stable embeddings

In this section we establish an embedding property for the 1-bit CS mapping A that ensures
that the sparse signal geometry is preserved in the measurements, analogous to the RIP for real-
valued measurements. This robustness property enables us to upper bound the reconstruction
performance even when some measurement signs have been changed due to noise. Conventional CS
achieves robustness via the δ-stable embeddings of sparse vectors (2) discussed in Section I. This
embedding is a restricted quasi-isometry between the metric spaces (RN , dX) and (RM , dY ), where
the distance metrics dX and dY are the `2-norm in dimensions N and M , respectively, and the
domain is restricted to sparse signals.4 We seek a similar definition for our embedding; however,
now the signals and measurements lie in the different spaces SN−1 and BM , respectively. Thus, we
first consider appropriate distance metrics in these spaces.

The Hamming distance is the natural distance for counting the number of unequal bits between
two measurement vectors. Specifically, for y,v ∈ BM we define the normalized Hamming distance
as

dH(y,v) =
1

M

M∑
i=1

yi ⊕ vi,

where ⊕ is the XOR operation such that a ⊕ b equals 0 if a = b and 1 otherwise. The distance is
normalized such that dH ∈ [0, 1]. In the signal space we only consider unit-norm vectors, thus, a
natural distance is the angle formed by any two of these vectors. Specifically, for x, s ∈ SN−1, we
consider

dS(x, s) :=
1

π
arccos〈x, s〉.

As with the Hamming distance, we normalize the true angle arccos〈x,y〉 such that dS ∈ [0, 1]. Note
that since both vectors have the same norm, the inner product 〈x, s〉 can easily be mapped to the
`2-distance using the polarization identity.

Using these distance metrics we define the binary stable embedding.

Definition 1 (Binary ε-Stable Embedding). Let ε ∈ (0, 1). A mapping A : RN → BM is a binary
ε-stable embedding (BεSE) of order K for sparse vectors if

dS(x, s)− ε ≤ dH(A(x), A(s)) ≤ dS(x, s) + ε

for all x, s ∈ SN−1 with x± s ∈ ΣK .

Our definition describes a specific quasi-isometry between the two metric spaces (SN−1, dS)
and (BM , dH), restricted to sparse vectors. While this mirrors the form of the δ-stable embedding
for sparse vectors, one important difference is that the sensitivity term ε is additive, rather than
multiplicative, and thus the BεSE is not bi-Lipschitz. This is a necessary side-effect of the loss of
information due to quantization.

A stated in the next Lemma, the BεSE enables robustness guarantees on any reconstruction
algorithm extracting a sparse signal x∗ from the mapping A(x).

4A function A : X → Y is called a quasi-isometry between metric spaces (X, dX) and (Y, dY ) if there exists
C > 0 and D ≥ 0 such that 1

C
dX(x, s) −D ≤ dY (A(x), A(s)) ≤ CdX(x, s) + D for x, s ∈ X, and E > 0 such that

dY (y,A(x)) < E for all y ∈ Y [50]. Since D = 0 for δ-stable embeddings, they are also called bi-Lipschitz mappings.
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Lemma 2. Let A : RN → BM be a BεSE of order 2K for sparse vectors and let x ∈ Σ∗K . A
sparse, unit norm estimate x∗ of x with Hamming error dH

Ä
A(x), A(x∗)

ä
from any reconstruction

algorithm has angular error bounded by

dS(x,x∗) ≤ dH
Ä
A(x), A(x∗)

ä
+ ε.

Proof. If x∗ is K-sparse (‖x∗‖0 ≤ K) and unit norm, then the result follows from the lower bound
in Definition 1. �

In other words, the reconstruction error is bounded by a small quantity more than the Hamming
error. Thus, if an algorithm returns a unit norm sparse solution with measurements that are not
consistent (i.e., dH(A(x), A(x∗)) > 0), as is the case with several algorithms [29–31], then the
the worst-case angular reconstruction error is close to Hamming distance between the estimate’s
measurements’ signs and the original measurements’ signs. Section V verifies this behavior with
simulation results. Furthermore, in Section III-C we use the BεSE property to guarantee that if
measurements are corrupted by noise or if signals are not exactly sparse, then the reconstruction
error is bounded.

Note that if A is a BεSE, then the angular error of any ∆1bit(ys,Φ,K) algorithm is bounded
by ε since in that case dH

Ä
A(x), A(x∗)

ä
= 0. As we have seen earlier this is to be expected

because, unlike conventional noiseless CS, quantization fundamentally introduces uncertainty and
exact recovery cannot be guaranteed. This is an obvious consequence of the mapping of the infinite
set Σ∗K to a discrete set of quantized values.

We next identify a class of matrices Φ for which A is a BεSE.

3.2 Binary ε-stable embeddings via random projections

As is the case for conventional CS systems with RIP, designing a Φ for 1-bit CS such that A has has
the BεSE property is a computationally intractable task. Fortunately, an overwhleming number
of “good” matrices do exist. Specifically we again focus our analysis on Gaussian matrices, i.e.,
Φ ∼ NM×N (0, 1) such that each element φi,j is randomly drawn i.i.d. from N (0, 1), as in as in
Section II-B. As motivation that this choice of Φ will indeed enable robustness, we begin with a
classical concentration of measure result for binary measurements from a Gaussian matrix.

Lemma 3. Let Φ be a matrix generated as Φ ∼ NM×N (0, 1), and let the mapping A : RN → BM
be defined as in (3). Fix ε > 0. For any x, s ∈ SN−1, we have

P
( ∣∣∣ dHÄA(x), A(s)

ä
− dS(x, s)

∣∣∣ ≤ ε
)
≥ 1− 2 e−2ε2M , (7)

where the probability is with respect to the generation of Φ.

Proof. This lemma is a simple consequence of Lemma 3.2 in [51] which shows that, for one mea-
surement, P[Aj(x) 6= Aj(s)] = dS(x, s). The result then follows by applying Hoeffding’s inequality
to the binomial random variable MdH

Ä
A(x), A(s)

ä
with M trials. �

In words, Lemma 3 implies that the Hamming distance between two binary measurement vectors
A(x), A(s) tends to the angle between the signals x and s as the number of measurements M
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increases. In [51] this fact is used in the context of randomized rounding for max-cut problems;
however, this property has also been used in similar contexts as ours with regards to preservation
of inner products from binary measurements [52, 53].

The expression (7) indeed looks similar to the definition of the BεSE, however, it only holds
for a fixed pair of arbitrary (not necessarily sparse) signals, chosen prior to drawing Φ. Our goal
is to extend (7) to cover the entire set of sparse signals. Indeed, concentration results similar to
Lemma 3, although expressed in terms of norms, have been used to demonstrate the RIP [15]. These
techniques usually demonstrate that the cardinality of the space of all sparse signals is sufficiently
small, such that the concentration result can be applied to demonstrate that distances are preserved
with relatively few measurements.

Unfortunately, due to the non-linearity of A we cannot immediately apply Lemma 3 using the
same procedure as in [15]. To briefly summarize, [15] proceeds by covering the set of all K-sparse
signals ΣK with a finite set of points (with covering radius δ > 0). A concentration inequality is
then applied to this set of points. Since any sparse signal lies in a δ-neighborhood of at least one
such point, the concentration property can be extended from the finite set to ΣK by bounding the
distance between the measurements of the points within the δ-neighborhood. Such an approach
cannot be used to extend (7) to ΣK , because the severe discontinuity of our mapping does not
permit us to characterize the measurements A(x+ s) using A(x) and A(s) and obtain a bound on
the distance between measurements of signals in a δ-neighborhood.

To resolve this issue, we extend Lemma 3 to include all points within Euclidean balls around
the vectors x and s inside the (sub) sphere Σ∗(T ) = {u ∈ SN−1 : suppu ⊂ T} for some fixed
support set T ⊂ {1, · · · , N} of size |T | = D. Define the δ-ball Bδ(x) := {a ∈ SN−1 : ‖x−a‖2 < δ}
to be the ball of Euclidean distance δ around x, and let B∗δ (x) = Bδ(x) ∩ Σ∗(T ).

Lemma 4. Given T ⊂ {1, · · · , N} of size |T | = D, let Φ be a matrix generated as Φ ∼ NM×N (0, 1),
and let the mapping A : RN → BM be defined as in (3). Fix ε > 0 and 0 ≤ δ ≤ 1. For any
x, s ∈ Σ∗(T ), we have

P
( ∣∣∣ dHÄA(u), A(v)

ä
− dS(x, s)

∣∣∣ ≤ ε+
»

π
2D δ

)
≥ 1− 2 e−2ε2M

for all u ∈ B∗δ (x) and v ∈ B∗δ (s).

The proof of this result is given in Appendix A.

In words, if the width δ is sufficiently small, then the Hamming distance between the 1-bit
measurements A(u), A(v) of any points u, v within the balls B∗δ (x), B∗δ (s), respectively, will be
close to the angle between the centers of the balls.

Lemma 4 is key for providing a similar argument to that in [15]. We now simply need to count
the number of pairs of K-sparse signals that are euclidean distance δ apart. The Lemma can
then be invoked to demonstrate that the angles between all of these pairs will be approximately
preserved by our mapping.5 Thus, with Lemma 4 under our belt, we demonstrate in Appendix A
the following result.

Theorem 3. Let Φ be a matrix generated as Φ ∼ NM×N (0, 1) and let the mapping A : RN → BM
be defined as in (3). Fix 0 ≤ η ≤ 1 and ε > 0. If the number of measurements is

M ≥ 4
ε2

Ä
K log(N) + 2K log(50

ε ) + log( 2
η )
ä
, (8)

5 We note that the covering argument in the proof of Theorem 2 also employs δ-balls in similar fashion but only
considers the probability that dH = 0, rather than the concentration inequality.
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then with probability exceeding 1− η, the mapping A is a BεSE of order K for sparse vectors.

By choosing Φ ∼ NM×N (0, 1) with M = O(K logN), with high probability we ensure that the
mapping A is a BεSE. Additionally, from (8) we find that the error decreases as

ε = O
Ä
(K/M)(1−α)/2 (logN)1/2

ä
,

for arbitrarily small α > 0. Unfortunately, this decay is at a slower rate (roughly by a factor of»
K/M) than the lower bound on the error given in Section II-A. This error rate results from

an application of the Chernoff-Hoeffding inequality in the proof of Theorem 3. An open question
is whether it is possible to obtain a tighter bound (with optimal error rate) for this robustness
property.

As with Theorem 2, Gaussian matrices provide a universal mapping, i.e., the result remains
valid for sparse signals in a basis Ψ ∈ RN×N . Moreover, Theorem 3 can also be extended to rows
of Φ that are drawn uniformly on the sphere, since the rows of Φ in Theorem 3 can be normalized
without affecting the outcome of the proof. Note that by normalizing the Gaussian rows of Φ, is is
as if they had been drawn from a uniform distribution of unit-norm signals.

We have now established a large class of robust BεSEs: 1-bit quantized Gaussian projections. We
now make use of this robustness by considering an example where the measurements are corrupted
by Gaussian noise.

3.3 Noisy measurements and compressible signals

In practice, hardware systems may be inaccurate when taking measurements; this is often modeled
by additive noise. The mapping A is robust to noise in an unusual way. After quantization, the
measurements can only take the values −1 or 1. Thus, we can analyze the reconstruction perfor-
mance from corrupted measurements by considering how many measurements flip their signs. For
example, we analyze the specific case of Gaussian noise on the measurements prior to quantization,
i.e.,

An(x) := sign (Φx+ n), (9)

where n ∈ RM has i.i.d. elements ni ∼ N (0, σ2). In this case, we demonstrate, via the following
lemma, a bound on the Hamming distance between the corrupted and ideal measurements with
the BεSE from Theorem 3 (see Appendix A).

Lemma 5. Let Φ be a matrix generated as Φ ∼ NM×N (0, 1), let the mapping A : RN → BM be
defined as in (3), and let An : RN → BM be defined as in (9). Let n ∈ RM be a Gaussian random
vector with i.i.d. components ni ∼ N (0, σ2). Fix γ > 0. Then for any x ∈ RN , we have

E
Ä
dH
Ä
An(x), A(x)

ä ä
≤ e(σ, ‖x‖2),

P
Ä
dH
Ä
An(x), A(x)

ä
> e(σ, ‖x‖2) + γ

ä
≤ e−2Mγ2 ,

where e(σ, ‖x‖2) = 1
2

σ√
‖x‖22+σ2

≤ 1
2

σ
‖x‖2 .

If x∗n is the estimate from a sparse consistent reconstruction algorithm ∆1bit(An(x),Φ,K) from
the measurements An(x), then it immediately follows from Lemma 5 and Theorem 3 that

dS(x∗n,x) ≤ dH
Ä
An(x), A(x)

ä
+ ε ≤ 1

2
σ
‖x‖2 + γ + ε, (10)
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with high probability (depending on M and γ). Given alternative noise distributions, e.g., Poisson
noise, a similar analysis can be carried out to determine the likely number of sign flips and thus
provide a bound on the error due to noise.

Another practical consideration is that real signals are not always strictly K-sparse. Indeed,
it may be the case that signals are compressible; i.e., they can be closely approximated by a K-
sparse signal. Lemma 5 can be extended to compressible signals. To do this, we consider the small
coefficients, i.e., the “tail” of the residual of a best K-term approximation of x, to be a source
of Gaussian noise on the measurements and then apply Lemma 5. This is possible due to our
particular Gaussian choice of Φ and the fact that for binary measurements, we are only concerned
with the number of measurements that change sign.

Corollary 2. Let Φ be a matrix generated as Φ ∼ NM×N (0, 1) and let the mapping A : RN → BM
be defined as in (3). Furthermore, let Φ have RIP constant δK . Let γ > 0. Then for any x ∈ SN−1

we have

E
Ä
dH
Ä
A(x), A(xK)

ä ä
≤ ρ(x,K)

2‖xK‖2 ,

P
(
dH
Ä
A(x), A(xK)

ä
> ρ(x,K)

2‖xK‖2 + γ
)
≤ e−2Mγ2 ,

ρ(x,K) =
√

1 + δK
Ä
‖x− xK‖2 + ‖x− xK‖1/

√
K
ä
,

where xK is the best K-term approximation of x.

The proof, which uses Lemma 6.1 of [13], is given in Appendix A. In similar fashion to (10),
this result implies that with high probability (depending on M and γ), the angular reconstruction
error of x∗ = ∆1bit(A(x),Φ,K) for any signal x (sparse or compressible) is bounded as

dS(x∗,x) ≤
√

1 + δK
2‖xK‖2

Ç
‖x− xK‖2 +

‖x− xK‖1√
K

å
+ γ + ε,

Much like conventional CS results, the reconstruction error on the order of the best K-term ap-
proximation error of the signal.

Thus far we have demonstrated a lower bound on the reconstruction error from 1-bit measure-
ments (Theorem 2) and introduced a condition on the mapping A that enables stable reconstruction
in noiseless, noisy, and compressible settings (Definition 1). We have furthermore demonstrated
that a large class of random matrices—specifically matrices with coefficients draw from a Gaussian
distribution and matrices with rows drawn uniformly from the unit sphere—provide good mappings
(Theorem 3). We now provide a more practical contribution in the form of a new algorithm for
reconstruction of sparse signals from 1-bit measurements.

4 BIHT: A Simple First-Order Reconstruction Algorithm

4.1 Problem formulation and algorithm definition

We now introduce a simple algorithm for the reconstruction of sparse signals from 1-bit compressive
measurements. Our algorithm, Binary Iterative Hard Thresholding (BIHT), is a simple modification
of IHT, the real-valued algorithm from which is takes its name [14]. The IHT algorithm has recently
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been extended to handle measurement non-linearities [54]; however, these results do not apply to
quantized measurements since quantization does not satisfy the requirements in [54].

We briefly recall that the IHT algorithm consists of two steps that can interpreted as follows.
The first step can be thought of as a gradient descent to reduce the least squares objective ‖y −
Φx‖22/2. Thus, at iteration l, IHT proceeds by setting al+1 = xl + ΦT (y − Φx). The second step
imposes a sparse signal model by projecting al+1 onto the “`0 ball”, i.e., selecting the K largest in
magnitude elements. Thus, IHT for CS can be thought of as trying to solve the problem

argmin
x

1
2‖y − Φx‖22 s.t. ‖x‖0 = K. (11)

The BIHT algorithm simply modifies the first step of IHT to instead minimize a consistency-
enforcing objective. Specifically, given an initial estimate x0 = 0 and 1-bit measurements ys, at
iteration l BIHT computes

al+1 = xl +
τ

2
ΦT
Ä
ys −A(xl)

ä
, (12)

xl+1 = ηK(al+1), (13)

where A is defined as in (3), τ is a scalar that controls gradient descent step-size, and the function
ηK(v) computes the best K-term approximation of v by thresholding. Once the algorithm has
terminated (either consistency is achieved or a maximum number of iterations have been reached),
we then normalize the final estimate to project it onto the unit sphere. Section IV-B discusses
several variations of this algorithm, each with different properties.

The key to understanding BIHT lies in the formulation of the objective. The following Lemma
shows that the term ΦT

Ä
ys−A(xl)

ä
in (12) is in fact the negative subgradient of a convex objective

J . Let [·]− denote the negative function, i.e., ([u]−)i = [ui]− with [ui]− = ui if ui < 0 and 0 else,
and u� v denote the Hadamard product, i.e., (u� v)i = uivi for two vectors u and v.

Lemma 6. The quantity 1
2 ΦT

Ä
A(x)−ys

ä
in (12) is a subgradient of the convex one-sided `1-norm

J (x) = ‖[ys � (Φx)]−‖1,

Thus, BIHT aims to decrease J at each step (12).

Proof. We first note that J is convex. We can write J (x) =
∑
i Ji(x) with each convex function

Ji given by

Ji(x;ys,Φ) =

{
|〈ϕi,x〉|, if Ai(x) (ys)i < 0,

0, else,

where ϕi denotes a row of Φ and Ai(x) = sign 〈ϕi,x〉. Moreover, if 〈ϕi,x〉 6= 0, then the gradient
of Ji is

∇Ji(x;ys,Φ) = 1
2(Ai(x)− (ys)i)ϕi =

{
Ai(x)ϕi if (ys)iAi(x) < 0,

0, else

while if 〈ϕi,x〉 = 0, then the gradient is replaced by the subdifferential set

∇Ji(x;ys,Φ) =
¶
ξ
2(Ai(x)− (ys)i)ϕi : ξ ∈ [0, 1]

©
3 1

2(Ai(x)− (ys)i)ϕi.

Thus, by summing over i we conclude that 1
2 ΦT

Ä
A(x)− ys

ä
∈∇J(x;ys,Φ). �
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Consequently, the BIHT algorithm can be thought of as trying to solve the problem:

x∗ = argmin
x

τ ‖[ys � (Φx)]−‖1 s.t. ‖x‖0 = K, ‖x‖2 = 1.

Observe that since ys � (Φx) simply scales the elements of Φx by the signs ys, minimizing the
one-sided `1 objective enforces a positivity requirement,

ys � (Φx) ≥ 0, (14)

that, when satisfied, implies consistency.

Previously proposed 1-bit CS algorithms have used a one-sided `2-norm to impose consis-
tency [28–31]. Specifically, they have applyied a constraint or objective that takes the form
‖[ys � (Φx)]−‖22/2. Both the one-sided `1 and `2 functions imply a consistent solution when they
evaluate to zero, and thus, both approaches are capable of enforcing consistency. However, the
choice of the `1 vs. `2 penalty term makes a significant difference in performance depending on the
noise conditions. We explore this difference in the experiments in Section V.

4.2 BIHT shifts

Several modifications can be made to the BIHT algorithm that may improve certain performance
aspects, such as consistency, reconstruction error, or convergence speed. While a comprehensive
comparison is beyond the scope of this paper, we believe that such variations exhibit interesting
and useful properties that should be mentioned.

Projection onto sphere at each iteration. We can enforce that every intermediate solution
have unit `2 norm. To do this, we modify the “impose signal model” step (13) by normalizing after
choosing the best K-term approximation, i.e., we compute

xl+1 = U
Ä
ηK(al+1)

ä
, (15)

where U(v) = v/‖v‖2. While this step is necessary for previous algorithms such as [29–31], it is in
general not necessary in the BIHT case.

If we choose to impose the projection, Φ must be appropriately normalized or, equivalently,
the step size of the gradient descent must be carefully chosen. Otherwise, the algorithm will
not converge. Empirically, we have found that for a Gaussian matrix, an appropriate scaling is
1/(
√
M‖Φ‖2), where the 1/‖Φ‖2 controls the amplification of the estimate from ΦT in the gradient

descent step (12) and the 1/
√
M ensures that ‖ys − A(xl)‖2 ≤ 2. Similar gradient step scaling

requirements have been imposed in the conventional IHT algorithm and other sparse recovery
algorithms as well (e.g., [9]).

Minimizing hinge loss. The one-sided `1-norm is related to the hinge-loss function in the
machine learning literature, which is known for its robustness to outliers [55]. Binary classification
algorithms seek to enforce the same consistency function as in (14) by minimizing a function∑

[κ − ys � (Φx)]+, where [·]+ sets negative elements to zero. When κ > 0, the objective is both
convex and has a non-trivial solution. Further connections and interpretations are discussed in
Section V. Thus, rather than minimizing the one-sided `1 norm, we can instead minimize the hinge-
loss. The hinge-loss can be interpreted as ensuring that the minimum value that an unquantized
measurement (Φx)i can take is bounded away form zero, i.e., |(Φx)i| ≥ κ. This requirement is
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similar to the sphere constraint in that it avoids a trivial solution; however, will perform differently
than the sphere constraint. In this case, in the gradient descent step (12), we instead compute

al+1 = xl − τΨT (sign(Ψxl − κ)− 1)/2

where Ψ = (ys � Φ) scales the rows of Φ by the signs of ys. Again, the step size must be chosen
appropriately, this time as Cκ/‖Φ‖2, where Cκ is a parameter that depends on κ.

Minimizing other one-sided objectives. In general, any function R(x) =
∑Ri(xi), where

Ri is continuous and has a negative gradient for xi ≤ 0 and is 0 for xi > 0, can be used to enforce
consistency. To employ such functions, we simply compute the gradient of R and apply it in (12).

As an example, the previously mentioned one-sided `2-norm has been used to enforce consistency
in several algorithms. We can use it in BIHT by computing

al = xl + τΦT [ys � Φxl]+

in (12). We compare and contrast the behavior of the one-sided `1 and `2 norms in Section V.

As another example, in similar fashion to the Huber norm [56], we can combine the `1 and `2
functions in a piecewise fashion. One potentially useful objective is

∑Ri(x), where Ri is defined
as follows:

Ri(x) =


0, xi ≥ 0,
|xi|, −1

2 ≤ xi < 0,
x2
i + 1

4 , xi < −1
2 .

(16)

While similar, this is not exactly a one-sided Huber norm. In a one-sided Huber-norm, the square
(`2) term would be applied to values near zero and the magnitude (`1) term would be applied to
values significantly less than zero, the reverse of what we propose here.

This objective can provide different robustness properties or convergence rates than the previ-
ously mentioned objectives. Specifically, during each iteration it may allow us to take advantage of
the shallow gradient of the one-sided `2 cost for large numbers of measurement sign discrepancies
and the steeper gradient of the one-sided `1 cost when most measurements have the correct sign.
This objective can be applied in BIHT as with the other objectives, by computing its gradient and
plugging it into (12).

5 Experiments

In this section we explore the performance of the BIHT algorithm and compare it to the performance
of previous algorithms for 1-bit CS. To make the comparison as straightforward as possible, we
reproduced the experiments of [31] with the BIHT algorithm.

The experimental setup is as follows. For each data point, we draw a length-N , K-sparse signal
with the non-zero entries drawn uniformly at random on the unit sphere, and we draw a new
M × N matrix Φ with each entry φij ∼ N (0, 1). We then compute the binary measurements ys
according to (3). Reconstruction of x∗ is performed from ys with three algorithms: matching sign
pursuit (MSP) [30], restricted-step shrinkage (RSS) [31], and BIHT (this paper); the algorithms
will be depicted by dashed, dotted, and triangle lines, respectively. Each reconstruction in this
setup is repeated for 1000 trials and with a fixed N = 1000 and K = 10 unless otherwise noted.
Furthermore, we perform the trials for M/N within the range [0, 2]. Note that when M/N > 1, we
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Figure 2: Average reconstruction angular error εsim vs. M/N , plotted three ways. (a) Angular error εsim, (b)
SNR in decibels, and (c) Inverse angular error ε−1

sim. The plot demonstrates that BIHT yields a considerable
improvement in reconstruction error, achieving an SNR as high as 40dB when M/N = 2. Furthermore,
we see that the error behaves according εsim = O (1/M), implying that on average we achieve the optimal
performance rate given in Theorem 1.

are acquiring more measurements than the ambient dimension of the signal. While the M/N > 1
regime is not interesting in conventional CS, it may be very practical in 1-bit systems that can
acquire sign measurements at extremely high, super-Nyquist rates.

Average error. We begin by measuring the average reconstruction angular error εsim over the
1000 trials. The results of this are depicted in Figure 2. We display the results of this experiment
three different ways: (i) the true angular error in Figure 2(a), which we denote as εsim, to demon-
strate typical values achieved, (ii) the signal-to-noise ratio (SNR)6 in Figure 2(b), to demonstrate
that the performance of these techniques is practical (since the angular error is unintuitive to most
observers), and (iii) the inverse of the angular error squared, i.e., ε−1

sim in Figure 2(c), to compare
with the performance predicted by Theorem 2.

We begin by comparing the performance of the algorithms. While the angular error of each
algorithm appears to follow the same trend, BIHT obtains smaller error (or higher SNR) than the
others, significantly so when M/N is greater than 0.35. The discrepancy in performance could
be due to difference in the algorithms themselves, or perhaps, differences in their formulations for
enforcing consistency. This is explored later in this section.

We now consider the actual performance trend. We see from Figure 2(c) that, above M/N =
0.35 each line appears fairly linear, albeit with a different slope, implying that with all other
variables fixed, εsim = O (1/M). This is on the order of the optimal performance as given by the
bound given in Theorem 1 and predicted by Theorem 2 for Gaussian matrices.

Misses and false alarms. We dig a little deeper into the source of errors by examining the

6In this paper we define the reconstruction SNR in decibels as SNR(x) := 10 log10(‖x‖22/‖x − x∗‖22). Note that
this metric uses the standard euclidean error and not angular error.
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Figure 3: Reconstructed signal coefficient (a) misses, and (b) false-alarms. The MSP algorithm is most likely
to miss a coefficient, while RSS and BIHT perform comparably. The RSS algorithm returns a large number
of coefficients that are close to zero and thus performs poorly in the false-alarms metric. Both BIHT and
MSP are restricted to have at most K false alarms by design.
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(b) M/N = 0.7
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Figure 4: Reconstruction angular error εsim vs. measurement Hamming error εH . BIHT returns a consistent solution
in most trials, even when the number of measurements is too low to permit a small angular error (see (a) M/N =
0.1). For larger M/N regimes, we see a linear relationship εsim ≈ C + εH between the average angular error εsim and
the hamming error εH where C is constant (see (b) and (c)). The BεSE formulation in Definition 1 predicts that the
angular error is bounded by the hamming error εH in addition to an offset ε. The dashed line εU1000 + εH denotes
the empirical upper bound for 1000 trials.

reconstruction “misses,” i.e., those coefficients that were identified as zero that are non-zero in the
true signal, as well as the “false-alarms”, i.e., those coefficients that were identified as non-zero that
are zero in the true signal. The results are depicted in Figure 3(a) and (b), respectively. In both
cases, BIHT outperforms the other algorithms, although it is very close to the RSS algorithm in
the number of misses. While both RSS and MSP have significantly more false-alarms than BIHT,
by design, MSP can return at most K non-zero coefficients and thus cannot have more than K
false alarms. Meanwhile, the RSS algorithm may have many coefficients that are significantly close
to zero but are numerically counted as non-zeros.

Consistency. We also expose the relationship between the Hamming distance dH(A(x), A(x∗))
between the measurements of the true and reconstructed signal and the angular error of the true and
reconstructed signal. Figure 4 depicts the Hamming distance vs. angular error for three different
values of M/N . The particularly striking result is that BIHT returns significantly more consistent
reconstructions than the two other algorithms. This is clear from the fact that most of the red
(plus) points lie on the y-axis while the majority of blue (dot) or green (triangle) points do not.
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Figure 5: Enforcing consistency: One-sided `1 vs. one-sided `2 BIHT. When BIHT attempts to minimize a one-sided
`2 instead of a one-sided `1 objective, the performance significantly decreases. We find this to be the case even when
an oracle provides the true signal support a priori. Note: (c) is simply a zoomed version (b).

We find that, even in significantly “under-sampled” regimes like M/N = 0.1, where the BεSE is
unlikely to hold, BIHT is likely to return a consistent solution (albeit with high variance of angular
errors). We also find that in “over-sampled” regimes such as M/N = 1.7, the range of angular
errors on the y-axis is small.

We can infer an interesting performance trend from Figures 4(b) and (c), where the BεSE
property may hold. Since the RSS and MSP algorithms often do not return a consistent solution,
we can visualize the relationship between angular error and hamming error. Specifically, on average
the angular reconstruction error is a linear function of hamming error, εH = dH(A(x), A(x∗)), as
similarly expressed by the reconstruction error bound provided by BεSE. Furthermore, if we let
ε1000 be the largest angular error (with consistent measurements) over 1000 trials, then we can
suggest an empirical upper bound for BIHT of ε1000 + εH . This upper bound is denoted by the
dashed line in Figures 4(b) and (c).

One-sided `1 vs. one-sided `2 objectives. As demonstrated in Figures 2 and 4, the BIHT
algorithm achieves significantly improved performance over MSP and RSS in both angular error and
Hamming error (consistency). A significant difference between these algorithms and BIHT is that
MSP and RSS seek to impose consistency via a one-sided `2-norm, as described in Section IV-B.
Minimizing either the one-sided `1 or one-sided `2 objectives will enforce consistency on the mea-
surements of the solution; however, the behavior of these two terms appears to be significantly
different, according to the previously discussed experiments.

To test the hypothesis that this term is the key differentiator between the algorithms, we im-
plemented BIHT-`2, a one-sided `2 variation of the BIHT algorithm that enabled a fair comparison
of the one-sided objectives (see Section IV-B for details). We compared both the angular error and
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Figure 6: Enforcing consistency with noise: One-sided `1 vs. one-sided `2 BIHT. When BIHT attempts to minimize
a one-sided `2 instead of the one-sided `1 objective, the algorithm is more robust to flips of measurement signs. *Note
that the Hamming error in (b) is measured with regards to the noisy measurements, e.g., a Hamming error of zero
means that we reconstructed the signs of the noisy measurements exactly.

Hamming error performance of BIHT and BIHT-`2. Furthermore, we implemented oracle assisted
variations of these algorithms where the true support of the signal is given a priori, i.e., ηK in (13)
is replaced by an operator that always selects the true support, and thus the algorithm only needs
to estimate the correct coefficient values. The oracle assisted case can be thought of as a “best
performance” bound for these algorithms. Using these algorithms, we perform the same experiment
detailed at the beginning of the section.

The results are depicted in Figure 5. The angular error behavior of BIHT-`2 is very similar to
that of MSP and RSS and underperforms when compared to BIHT. We see the same situation with
regards to Hamming error: BIHT finds consistent solutions for the majority of trials, but BIHT-`2
does not. Thus, the results of this simulation suggest that the one-sided term plays a significant
role in the quality of the solution obtained.

One way to explain the performance discrepancy between the two objectives comes from observ-
ing the deep connection between our reconstruction problem and binary classification. As explained
previously, in the classification context, the one-sided `1 objective is similar to the hinge-loss, and
furthermore, the one-sided `2 objective is similar to the so-called square-loss. Previous results in
machine learning have shown that for typical convex loss functions, the minimizer of the hinge
loss has the tightest bound between expected risk and the Bayes optimal solution [57] and good
error rates, especially when considering robustness to outliers [57, 58]. Thus, the hinge loss is often
considered superior to the square loss for binary classification.7 One might suspect that since the
one-sided `1-objective is very similar to the hinge loss, it too should outperform other objectives in
our context. Understanding why in our context, the geometry of the `1 and `2 objectives results in
different performance is an interesting open problem.

We probed the one-sided `1/`2 objectives further by testing the two versions of BIHT on noisy
measurements. We flipped a number of measurement signs at random in each trial. For this
experiment, N = M = 1000 and K = 10 are fixed, and we performed 100 trials. We varied the
number of sign flips between 0% and 5% of the measurements. The results of the experiment are
depicted in Figure 6. We see that for both the angular error in Figure 6(a) and Hamming error

7Additional “well-behaved” loss functions (e.g., the Huber-ized hinge loss) have been proposed [59] and a host
of classification algorithms related to this problem exist [58–62], both of which may prove useful in the 1-bit CS
framework in the future.
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Figure 7: Comparison of BIHT to conventional CS multibit uniform scalar quantization (multibit reconstructions
performed using BPDN [8]). BIHT is competitive with standard CS working with multibit measurements when the
total number of bits is severely constrained. In particular, the BIHT algorithm performs strictly better than CS with
4 bits per measurement.

in Figure 6(b), that the one-sided `1 objective performs better when there are only a few errors
and the one-sided `2 objective performs better when there are significantly more errors. This is
expected since the `1 objective promotes sparse errors. This experiment implies that BIHT-`2
(and the other one-sided `2-based algorithms) may be more useful when the measurements contain
significant noise that might cause a large number of sign flips, such as Gaussian noise.

Performance with a fixed bit-budget. In some applications we are interested in reducing
the total number of bits acquired due to storage or communication costs. Thus, given a fixed total
number of bits, an interesting question is how well 1-it CS performs in comparison to conventional
CS quantization schemes and algorithms. For the sake of brevity, we give a simple comparison here
between the 1-bit techniques and uniform quantization with Basis Pursuit DeNoising (BPDN) [8]
reconstruction. While BPDN is not the optimal reconstruction technique for quantized measure-
ments, it (and its variants such as the LASSO [59]) is considered a benchmark technique for
reconstruction from measurements with noise and furthermore, is widely used in practice.

The experiment proceeds as follows. Given a total number of bits and a (uniform) quantization
bit-depth B (i.e., number of bits per measurement), we choose the number of measurements as
M = total bits/B, N = 2000, and the sparsity K = 20. The remainder of the experiment proceeds
as described earlier (in terms of drawing matrices and signals). For bit depth greater than 1, we
reconstruct using BPDN with an optimal choice of noise parameter and we scale the quantizer to
such that signal can take full advantage of its dynamic range.

The results of this experiment are depicted in Figure 7. We see a common trend in each line:
lackluster performance until “sufficient” measurements are acquired, then a slow but steady increase
in performance as additional measurement are added, until a performance plateau is reached. Thus,
since lower bit-depth implies that a larger number of measurements will be used, 1-bit CS reaches
the performance plateau earlier than in the multi-bit case (indeed, the transition point is achieved
at a higher number of total bits as the bit-depth is increased). This enables significantly improved
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outperforms conventional quantization when β < 6.

performance when the rate is severely constrained and higher bit-rates per measurements would sig-
nificantly reduce the number of available measurements. For higher bit-rates, as expected from the
analysis in [33], using fewer measurements with refined quantization achieves better performance.

It is also important to note that, regardless of trend, the BIHT algorithm performs strictly better
than BPDN with 4 bits per measurement and uniform quantization for the parameters tested here.
This gain is consistent with similar gains observed in [29, 30]. A more thorough comparison of
additional CS quantization techniques with 1-bit CS is a subject for future study.

Comparison to quantized Nyquist samples. In our final experiment, we compare the
performance of the 1-bit CS technique to the performance of a conventional uniform quantizer
applied to uniform Nyquist-rate samples. Specifically, in each trial we draw a new Nyquist-sampled
signal in the same way as in our previous experiments and with fixed N = 2000 and K = 20;
however, now the signals are sparse in the discrete cosine transform (DCT) domain. We consider
four reconstruction experiments. First, we quantize the Nyquist-rate signal with a bit-depth of β
bits per sample (and optimal quantizer scale) and perform linear reconstruction (i.e., we just use
the quantized samples as sample values). Second, we apply BPDN to the quantized Nyquist-rate
samples with optimal choice of noise parameter, thus denoising the signal using a sparsity model.
Third, we draw a new Gaussian matrix with M = N , quantize the measurements to β bits, again
at optimal quantizer scale, and reconstruct using BPDN. Fourth, we draw a new Gaussian matrix
with M = βN and compute measurements, quantize to one bit per measurement by maintaining
their sign, and perform reconstruction with BIHT. Note that the same total number of bits is used
in each experiment.

Figure 8 depicts the average SNR obtained by performing 100 of the above trials. The lin-
ear, BPDN, Gaussian measurements with BPDN, and BIHT reconstructions are depicted by solid,
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dashed, dash-circled, and dash-dotted lines, respectively. The linear reconstruction has a slope of
6.02dB/bit-depth, exhibiting a well-known trade-off for conventional uniform quantization. The
BPDN reconstruction (without projections) follows the same trend, but obtains an SNR that is
at least 10dB higher than the linear reconstruction. This is because BPDN imposes the sparse
signal model to denoise the signal. We see about the same performance with the Gaussian projec-
tions at M = N , although it performs slightly worse than without projections since the Gaussian
measurements require a slightly larger quantizer range. Similarly to the results in Fig. 7, in low
Nyquist bit-depth regimes (β < 6), 1-bit CS achieves a significantly higher SNR than the other two
techniques. When 6 < β < 8, 1-bit CS is competitive with the BPDN scenario. This simulation
demonstrates that for a fixed number of bits, 1-bit CS is competitive to conventional sampling with
uniform quantization, especially in low bit-depth regimes.

6 Discussion

In this paper we have developed a rigorous mathematical foundation for 1-bit CS. Specifically, we
have demonstrated a lower bound on reconstruction error as a function of the number of measure-
ments and the sparsity of the signal. We have demonstrated that Gaussian random projections
almost reach this lower bound (up to a log factor) in the noiseless case. This behavior is consis-
tent with and extends existing results in the literature on multibit scalar quantization and 1-bit
quantization of non-sparse signals.

We have also introduced reconstruction robustness guarantees through the binary ε-stable em-
bedding (BεSE) property. This property can be thought of as extending the RIP to 1-bit quantized
measurements. To our knowledge, this is the first time such a property has been introduced in
the context of quantization. To be able to use this property we established that a large class of
random projections satisfy this property. This class is not as exhaustive as the class of matrices
satisfying the RIP. Extending this property to a larger class of matrices is an interesting topic for
future research.

Using the BεSE, we have proven that 1-bit CS systems are robust to measurement noise added
before quantization as well as to signals that are not exactly sparse but compressible.

We have introduced a new 1-bit CS algorithm, BIHT, that achieves better performance over
previous algorithms in the noiseless case. This improvement is due to the enforcement of consistency
using a one-sided linear objective, as opposed to a quadratic one. The linear objective is similar to
the hinge loss from the machine learning literature.

We remind the reader that the central goal of this paper has been signal acquisition with
quantization. As explained previously, one motivation for our work is the development of very high
speed samplers. In this case, we are interested in building fast samplers by relaxing the requirements
on the primary hardware burden, the quantizer. Such devices are susceptible to noise. Thus, while
our noiseless results extend previous 1-bit quantization results (e.g., see [47] and [45]) to the sparse
signal model setting and are of theoretical interest, a major contribution has been the further
development of the robust guarantees, even if they produce error rates that seem suboptimal when
compared to the noiseless case.

A number of interesting questions remain unanswered. As we discuss in Section III-B earlier, we
have found that the BεSE holds for Gaussian matrices with angular error roughly on the order of
O(
»
K/M) worse than the optimal. One question is whether this gap can be closed with an alter-
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native derivation, or whether it is a fundamental requirement for stability. Another useful pursuit
would be to provide a more rigorous understanding of the discrepancy between the performance
of the one-sided `1 and `2 objectives. Analysis of the performance behavior might lead to better
one-sided functions.
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A Lemma 1: Intersections of Orthants by Subspaces

In this section, we demonstrate that while there are 2M available quantization points provided by
1-bit measurements, a K sparse signal will not use all of them. To understand how effectively
the quantization bits are used, we first need to investigate how the K-dimensional subspaces pro-
jected from the N -dimensional K-sparse signal spaces intersect orthants in the M -dimensional
measurement space.

An orthant in M dimensions is a set of points in RM that all have the same sign pattern:

Os = {x | signx = s},

where s is a vector of ±1. Each orthant has M boundaries of dimension M − 1, defined as the
subspace with a coordinate set to 0:

Bi = {x | (x)i = 0}.

We split each boundary into 2M−1 faces, defined as the set

Fi,s = {x | (x)i = 0 and sign (x)j = (s)j for all i 6= j} ,

where s is the sign vector of a bordering orthant, and i is the boundary in which the face lies.
Each face borders two orthants. Note that the faces are M − 1 dimensional orthants in the M − 1
dimensional boundary subspace. The geometry of the problem in R3 is summarized in Figure 9(a).

We use I(M,K) to denote the maximum number of orthants in M dimensions intersected by
a K-dimensional subspaces (with I(M, 1) = 2). We upper bound I(M,K) using an inductive
argument that relies on the following two lemmas:

Lemma 7. If a K-dimensional subspace S ⊂ RM is not the subset of a boundary Bi, then the
subspace and boundary do intersect and their intersection is a K − 1 dimensional subspace of Bi.

Proof. We count the dimensions of the relevant spaces. If S is not a subset of Bi, then it equals the
direct sum S = (S ∩Bi)⊕W, where W ⊂ RM is also not a subspace of Bi. Since dimBi = M − 1,
dimW ≤ 1, and dimS ∩Bi = K − 1 follows. �
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(a) (b)

Figure 9: (a) The geometry of orthants in R3. (b) The geometry of spherical caps.

Lemma 8. For K > 1, a K-dimensional subspace that intersects an orthant also non-trivially
intersects at least K faces bordering that orthant.

Proof. Consider a K-subspace S, a point p ∈ S interior to the orthant Osignp, and a vector x1 ∈ S
non-parallel to p. The following iterative procedure can be used to prove the result:

1. Starting from 0, grow a until the set p ± axl intersects a boundary Bi, say at a = al. It
is straightforward to show that as a grows, a boundary will be intersected. The point of
intersection is in the face Fi,signp. The set {p± axl|a ∈ (0, al)} is in the orthant Osignp.

2. Determine a vector xl+1 ∈ S parallel to all the boundaries already intersected and not parallel
to p, set l = l + 1 and iterate from step 1.

A vector can always be found in step 2 for the first K iterations since S is K dimensional. The
vector is parallel to all the boundaries intersected in the previous iterations and therefore p ±
axl always intersects a boundary not intersected before. Therefore, at least K distinct faces are
intersected. �

Lemmas 7 and 8 lead to the main result in this section. Lemma 1 in Section II-A follows
trivially.

Lemma 9. The number of orthants intersected by a K-dimensional subspace S in an M dimen-
sional space V is upper bounded by

I(M,K) ≤
Ç
M

K

å
2K .

Proof. The main intuition is that since the faces on each boundary are equivalent to orthants in
the lower dimensional subspace of the boundary, the maximum number of faces intersected at each
boundary is a problem of dimension I(M − 1,K − 1).

If S is contained in one of the boundaries in V, the number of orthants of V intersected is
at most I(M − 1,K). Since I(M,K) is non-decreasing in M and K, we can ignore this case in
determining the upper bound.
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If S is not contained in one of the boundaries then Lemma 7 shows that the intersection of S
with any boundary Bi is a K − 1 dimensional subspace in Bi. To count the faces of Bi intersected
by S we use the observation in the definition of faces above, that each face is also an orthant of Bi.
Therefore, the maximum number of faces of Bi intersected is a recursion of the same problem in
lower dimensions, i.e., is upper bounded by I(M − 1,K − 1). Since there are M boundaries in V,
it follows that the number of faces in V intersected by S is upper bounded by M · I(M − 1,K − 1).

Using Lemma 8 we know that for an orthant to be intersected, at least K faces adjacent to it
should be intersected. Since each face is adjacent to two orthants, the total number of orthants
intersected cannot be greater than twice the number of faces intersected divided by K:

I(M,K) ≤ 2M · I(M − 1,K − 1)

K
. (17)

The result follows by induction. �

A tighter achievable bound is also known [63, 64]:

I(M,K) ≤ 2
K−1∑
l=0

Ç
M − 1

l

å
(18)

≤ 2K

Ç
M − 1

K − 1

å
if K ≤ M − 1

2
.

Although (18) is tighter and achieved with a subspace in a general configuration, it leads to expres-
sions on the same asymptotical order of our main results. We use (17) for the remainder of this
paper because of its simpler form.

B Theorem 1: Distributing Signals to Quantization Points

To prove Theorem 1 we consider how the available quantization points optimally cover the set of
signals of interest. We consider unit norm signals that belong in a union of L subspaces, each of
dimension K. Thus the set of interest is the union of L unit spheres of K dimensions.

First we need to understand how to measure the sets of signals of interest. We denote the unit
sphere in K dimensions—which is the surface of the K-dimensional unit ball—using SK−1, and the
rotationally invariant area measure on the sphere using σ(·). Thus the area of the whole sphere is
equal to σ(SK−1). If subspaces intersect, the area of the sphere inside the intersection has measure
zero. Therefore, the total surface area of all L spheres is LSK−1.

The most efficient cover of this area is achieved if every point covers a spherical cap of radius r,
denoted using C(r). The geometry of the problem is demonstrated in Figure 9(b). From [65] the
surface area of a spherical cap of radius r satisfies

σ(C(r)) ≤ rKσ(SK−1),

For L
(M
K

)
2K points to cover the area Lσ(SK−1) we require

L

Ç
M

K

å
2Kσ(C(r)) ≥ Lσ(SK−1)⇒

Å
Me2r

K

ãK
≥ 1

⇒ r ≥ K

2eM
= Ω (K/M) ,
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using the bound
(M
K

)
≤ (eM/K)K . Incidentally, this proof gives an obvious solution to a Grassma-

nian covering problem of 1-dimensional subspaces in K dimensional spaces. Although Grassmanian
packing problems have been examined in the literature (e.g., in the context of frame theory [66]),
to our knowledge, the Grassmanian covering problem has not been posed or attempted.

C Theorem 2: Optimal Performance via Gaussian Projections

To prove Theorem 2, we follow the procedure given in [44, Theorem 3.3]. We begin by restricting
our analysis to the support set T ⊂ {1, · · · , N} with |T | ≤ D ≤ N , and thus we consider vectors
that lie on the (sub) sphere Σ∗(T ) = {x : suppx ⊂ T, ‖x‖2 = 1} ⊂ RN . We remind the reader
that Bδ(x) := {a ∈ SN−1 : ‖x− a‖2 < δ} is the ball of unit norm vectors of Euclidean distance δ
around x, and we write B∗δ (x) = Bδ(x) ∩ Σ∗(T ) as in Section III-B.

Given a vector ϕ ∼ NN×1(0, 1) and two distinct points p and q in Qδ, we have that

P
î
∀u ∈ B∗δ (p),∀v ∈ B∗δ (q) : signϕTu 6= signϕTv

ó
≥ dS(p, q) −

»
π
2D δ,

from Lemma 10 (given in Section A). When εo > 2δ, we have the relationship

π dS(p, q) ≥ 2 sin(
π

2
dS(p, q)) = ‖p− q‖2 ≥ ‖u− v‖2 − 2δ > εo − 2δ,

and thus

P
î
∀u ∈ B∗δ (p),∀v ∈ B∗δ (q) : signϕTu 6= signϕTv | ‖u− v‖2 > εo

ó
≥ εo

π − ( 2
π +
»

π
2D) δ.

By setting δ = πεo/(4 + π
√

2πD) (and reversing the inequality), we obtain

P
î
∃u ∈ B∗δ (p),∃v ∈ B∗δ (q) : sign (ϕTu) = sign (ϕTv) | ‖u− v‖2 > εo

ó
≤ 1− εo

2 .

Thus, for M different random vectors ϕi arranged in Φ = (ϕ1, · · · ,ϕM )T ∼ NM×N (0, 1), and for
the associated mapping A defined in (3), we have that

P
î
∃u ∈ B∗δ (p),∃v ∈ B∗δ (q) : A(u) = A(v) | ‖u− v‖2 > εo

ó
≤ (1− εo

2 )M .

In words, we have found a bound on the probability that two vectors’ measurements are consistent,
even if their euclidean distance is greater than εo, but only for vectors in the restricted (sub) sphere
Σ∗(T ). Now we seek to cover the rest of the space Σ∗K (unit norm K-sparse signals).

Given a radius δ > 0, the sphere Σ∗(T ) can be covered with a finite set Qδ ⊂ Σ∗(T ) of no more
than (3/δ)D points such that, for any w ∈ Σ∗(T ), there exists a q ∈ Qδ with w ∈ B∗δ (q) [15]. Since

there are no more than
(|Qδ|

2

)
≤ (|Qδ|)2 ≤ (3/δ)2D pairs of distinct points in Qδ, we find

P
î
∃u,v ∈ Σ∗(T ) : dH(A(u), A(v)) = 0 | ‖u− v‖2 > εo

ó
≤
Ä

1
πεo

(12 + 3π
√

2πD)
ä2D

(1− εo
2 )M .

To obtain the final bound, we observe that any pair of unit K-sparse vectors x and s in
Σ∗K belongs to some Σ∗(T ) with T = suppx ∪ supp s and |T | ≤ 2K. There are no more than( N
2K

)
≤ (N/2K)2K of such sets T , and thus setting D = 2K above yields

P
î
∃u,v ∈ Σ∗K : dH(A(u), A(v)) = 0 | ‖u− v‖2 > εo

ó
≤ ( N2K )2K ( 1

πεo
(12 + 6π

√
πK))4K (1− εo

2 )M

≤ exp
î
2K log( N2K ) + 4K log( 1

πεo
(12 + 6π

√
πK))−M εo

2

ó
,
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where the second inequality follows from 1 − εo
2 ≤ exp εo

2 . By upper bounding this probability by
η and solving for M , we obtain

M ≥ 1
εo

Ä
2K log N

2K + 4K log( 1
πεo

(12 + 6π
√
πK)) + log 1

η

ä
.

Since K ≥ 1, we have that 1
π (12 + 6π

√
πK) < 12

√
πK < 16

√
2K, and thus the previous relation is

then satisfied when

M ≥ 1
εo

Ä
2K log N

2K + 4K log( 1
εo

(16
√

2K)) + log 1
η

ä
= 1

εo

Ä
2K log N

2 + 4K log( 1
εo

(16
√

2)) + log 1
η

ä
= 1

εo

Ä
2K logN + 4K log(16

εo
) + log 1

η

ä
.

D Lemma 4: Concentration of Measure for δ-Balls

Proving Lemma 4 amounts to showing that, for some fixed ε > 0 and 0 ≤ δ ≤ 1, given a Gaussian
matrix Φ ∈ RM×D, the mapping A : RD → BM defined as A(u) = sign (Φu), and for some
x, s ∈ SD−1, we have

P
( ∣∣∣ dHÄA(u), A(v)

ä
− dS(x, s)

∣∣∣ ≤ ε+
»

π
2D δ

)
≥ 1− 2 e−2ε2M , ∀u ∈ B∗δ (x), ∀v ∈ B∗δ (s),

where the balls Bδ are also restricted to RD.

Given u ∈ B∗δ (x) and v ∈ B∗δ (s), the quantity MdH
Ä
A(u), A(v)

ä
is the sum

∑
iAi(u)⊕Ai(v),

where Ai(u) stands for the ith component of A(u). For one index 1 ≤ i ≤M

Ai(u)⊕Ai(v) ≤ Z+
i := max

¶
Ai(p)⊕Ai(q) : p ∈ B∗δ (x), q ∈ B∗δ (s)

©
,

Ai(u)⊕Ai(v) ≥ Z−i := min
¶
Ai(p)⊕Ai(q) : p ∈ B∗δ (x), q ∈ B∗δ (s)

©
,

and therefore

Z− :=
M∑
i=1

Z−i ≤ M dH
Ä
A(u), A(v)

ä
≤

M∑
i=1

Z+
i =: Z+.

Of course, the occurrence of Z+
i = 0 (Z−i = 1) means that all vector pairs taken separately in

B∗δ (x) and B∗δ (s) have consistent (or respectively, inconsistent) measurements on the ith sensing
component Ai. More precisely, since ϕi ∼ NN×1(0, 1), Z±i are binary random variables such that
P[Z+

i = 1] = 1 − p0 and P[Z−i = 1] = p1 independently of i, where the probabilities p0 and p1 are
defined by

p0(dS(x, s), δ) = P[Z+
i = 0] = P

î
∀p ∈ B∗δ (x), ∀q ∈ B∗δ (s), Ai(u) = Ai(v)

ó
,

p1(dS(x, s), δ) = P
î
∀p ∈ B∗δ (x),∀q ∈ B∗δ (s), Ai(u) 6= Ai(v)

ó
.

In summary, Z+ and Z− are binomially distributed with M trials and probability of success
1− p0 and p1, respectively. Furthermore, we have that EZ+ = M (1− p0) and EZ− = M p1, thus
by the Chernoff-Hoeffding inequality,

P
î
Z+ > M (1− p0) +Mε

ó
≤ e−2Mε2 ,

P
î
Z− < M p1 −Mε

ó
≤ e−2Mε2 .
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This indicates that with a probability higher than 1− 2e−2Mε2 , we have

p1 − ε ≤ dH
Ä
A(u), A(v)

ä
≤ (1− p0) + ε.

The final result follows by lower bounding p0 and p1 as in Lemma 10.

Lemma 10. Given 0 ≤ δ < 1 and two unit vectors x, s ∈ SD−1, we have

p0 = P
î
∀u ∈ Bδ(x), ∀v ∈ Bδ(s), sign 〈ϕ,u〉 = sign 〈ϕ,v〉

ó
≥ 1 − dS(x, s) −

»
π
2D δ, (19)

p1 = P
î
∀u ∈ Bδ(x), ∀v ∈ Bδ(s), sign 〈ϕ,u〉 6= sign 〈ϕ,v〉

ó
≥ dS(x, s) −

»
π
2D δ. (20)

Proof of Lemma 10. We begin by introducing some useful properties of Gaussian vector distribu-
tion. If ϕ ∼ ND×1(0, 1), the probability that ϕ ∈ A ⊂ RD is simply the measure µ of A with
respect to the standard Gaussian density γ(ϕ) = 1

(2π)D/2
e−‖ϕ‖

2/2, i.e.,

P[ϕ ∈ A ] = µ(A) =

∫
A

dDϕ γ(ϕ),

with µ(RD) = 1. It may be easier to perform this integration over a hyper-spherical set of co-
ordinates. Specifically, we let any vector ϕ be represented by the values (r, φ1, · · · , φD−1) where
r ∈ R+ stands for the vector length, φ1, · · · , φD−2 ∈ [0, π] corresponds to the vector angles in each
dimension, and φD−1 ∈ [0, 2π] being the angle of ϕ in the “xs” plane. This is possible since γ is
rotionally invariant and thus we may assume the “xs” plane is spanned by the canonical vectors
eD = x and eD−1 in the canonical basis {e1, · · · , eD} of RD, with e1 = (x ∧ s) / ‖x ∧ s‖2 and
eD−1 = eD ∧ e1.

The change of coordinates is then defined as ϕ1 = r cosφ1, ϕ2 = r sinφ1 cosφ2, ..., ϕD−1 =
r sinφ1 · · · sinφD−2 cosφD−1, and ϕD = r sinφ1 · · · sinφD−2 sinφD−1, while, conversely, r = ‖ϕ‖2,
tanφ1 = (ϕ2

D+· · ·+ϕ2
2)1/2/ϕ1, ..., tanφD−2 = (ϕ2

D+ϕ2
D−1)1/2 /ϕD−2, and tanφD−1 = ϕD /ϕD−1.8

We now seek a lower bound on p1. Computing this probability amounts to estimating

p1 = P[∀u ∈ Bδ(x), ∀v ∈ Bδ(s), 〈ϕ,u〉〈ϕ,v〉 ≤ 0 ] = µ(Wδ),

where Wδ = {ϕ : 〈ϕ,u〉〈ϕ,v〉 ≤ 0, ∀u ∈ Bδ(x), ∀v ∈ Bδ(s)} is the set of all vectors ϕ such that
its inner product with u and v result in different signs. Note that if Bδ(x) ∩ Bδ(s) is not empty,
then we have p1 = 0 since for w ∈ Bδ(x) ∩ Bδ(s), we have 〈ϕ,w〉2. This term cannot be negative
and thus Wδ = {ϕ : 〈ϕ,w〉 = 0}, which has measure zero with respect to µ. In order to avoid
this trouble, we must choose dS(x, s) ≥ 4

π arcsin δ/2. Furthermore, since arcsinλ ≤ π
2λ for any

0 ≤ λ ≤ 1, this occurs if dS(x, s) ≥ δ.
The remainder of the proof is devoted to finding an appropriate way to integrate the set Wδ.

To this end, we begin by demonstrating that estimating p1 can be simplified with the following
equivalence (proved just after the completion of the proof of Lemma 10).

Lemma 11. The set Wδ ⊂ RD is equal to the set

V−δ = {ϕ : 〈ϕ,x〉〈ϕ, s〉 ≤ 0, ‖x − PΠ(ϕ) x‖ ≥ δ, ‖s − PΠ(ϕ) s‖ ≥ δ},

where PΠ(ϕ) is the orthogonal projection on the plane Π(ϕ) = {u ∈ RD : 〈ϕ,u〉 = 0}.
8This change of coordinates can be very convenient. For instance, the proof of Lemma 3 relies on the computation

P[Ai(x) 6= Ai(s)] = µ(A = {ϕ : φD−1 ∈ [0, π dS(x, s)] ∪ [π, π + π dS(x, s)]}) = dS(x, s), since for (almost) all ϕ ∈ A,
x and s live in the two different subvolumes determined by the plane {u : 〈ϕ,u〉 = 0} [51, 52].
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Using the hyper spherical coordinate system developed earlier, membership in V−δ can be ex-
pressed as

ϕ = (r, φ1, · · · , φD−1) ∈ V−δ ⇔


tanφD−1 ∈ [0, tan θ],

sinφ1 · · · sinφD−2 | sinφD−1| ≥ δ,

sinφ1 · · · sinφD−2 | sin(φD−1 − θ)| ≥ δ.

(R1)

(R2)

(R3)

Indeed, requirement (R1) enforces 〈ϕ,x〉〈ϕ, s〉 ≤ 0, while (R2) and (R3) are direct translations
of the requirements that ‖x − PΠ(ϕ) x‖ = |〈“ϕ,x = eD〉| ≥ δ and ‖s − PΠ(ϕ) s‖ = |〈“ϕ,y =

− sin θ eD + cos θ eD−1〉| ≥ δ, with “ϕ = 1
‖ϕ‖ϕ.

We are now ready to integrate to find p1:

p1 = µ(V−δ ) = 1
(2π)D/2

∫
R+

dr rD−1e−r
2/2

ñÄ ∫ π

0
dφ1 sinD−2 φ1

ä
· · ·
Ä ∫ π

0
dφD−2 sinφD−2

ä ô
· · ·î ∫

[0,θ]∪ [π,π+θ]
dφD−1 χg(δ,ϕ)(φD−1)χg(δ,ϕ)(φD−1 − θ)

ó
,

with χλ(φ) = 1 if | sinφ | ≥ λ and 0 else, for some λ ∈ [0, 1], and g(δ,ϕ) = δ/(sinφ1 · · · sinφD−2).

However, ∫
[0,θ]∪ [π,π+θ]

dφ χλ(φ)χλ(φ− θ) = 2θ − 4 arcsinλ ≥ 2θ − 2πλ,

since λ ≤ arcsinλ ≤ π
2λ for any λ ∈ [0, 1]. Consequently,

µ(V−δ ) ≥ 1
(2π)D/2

∫
R+

dr rD−1e−r
2/2 · · ·ñÄ ∫ π

0
dφ1 sinD−2 φ1

ä
· · ·
Ä ∫ π

0
dφD−2 sinφD−2

ä ôÄ
2θ − 2πδ

(sinφ1 ··· sinφD−2)

ä
=

θ

π
− π δ ID−3 ID−4 · · · I0

ID−2 ID−3 ID−4 · · · I0
=

θ

π
− π δ

ID−2
,

with In =
∫ π

0 dφ sinn φ and knowing that (2π)D/2 = 2(ID−2 · · · I0)
∫
R+

dr rD−1e−r
2/2.

Using the fact that In =
√
π Γ(n+1

2 )/Γ(n2 +1) ≥
√
π/
»

n
2 + 1

4 , we obtain ID−2 ≥
√
π√

D
2
− 3

4

≥
»

2π
D ,

and thus
p1 ≥ dS(x, s) −

»
π
2D δ.

If we want a meaningful bound for p1 ≥ 0, then we must have dS(x, s) ≥
»

π
2d δ ≥ δ. Therefore,

as soon as the lower bound is positive, the aforementioned condition dS(x, s) ≥ δ always holds.

The lower bound for p0 is obtained similarly. It is straightforward to show that p0 = µ(V+
δ ),

with V+
δ = {ϕ : 〈ϕ,x〉〈ϕ, s〉 > 0, ‖x − PΠ(ϕ) x‖ ≥ δ, ‖y − PΠ(ϕ) s‖ ≥ δ}. Lower bounding µ(V+

δ )

as for µ(V+
δ ), the only difference occurring with the integral on φD−2 given by∫

[θ,π]∪ [π+θ,2π]
dφD−1 χg(δ,ϕ)(φD−1)χg(δ,ϕ)(φD−1 − θ) · · ·

= 2π − 2θ − 4 arcsin g(δ,ϕ) ≥ 2(π − θ)− 2πg(δ,ϕ).
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Therefore, the lower bound of p0 amounts to change θ → π− θ in the one of p1, which provides the
result. �

Proof of Lemma 11. If δ = 0, there is nothing to prove. Therefore δ > 0 and if ϕ∗ belongs to either
Vδ or Wδ, we must have 〈ϕ,x〉〈ϕ, s〉 < 0. It is also sufficient to work on the restriction of Vδ and
Wδ to unit vectors.

(i) Vδ ⊂ Wδ: By contradiction, let us assume that ϕ∗ ∈ Vδ but ϕ∗ /∈ Wδ. Without any loss of
generality, 〈ϕ∗,x〉 > 0 and 〈ϕ∗, s〉 < 0. Since ϕ∗ /∈ Wδ, there exist two vectors u∗ ∈ Bδ(x) and
v∗ ∈ Bδ(y) such that 〈ϕ∗,u∗〉〈ϕ∗,v∗〉 > 0. If 〈ϕ∗,u∗〉 > 0 and 〈ϕ∗,v∗〉 > 0, then, since 〈ϕ∗, s〉 < 0
and by continuity of the inner product, there exist a λ ∈ (0, 1) such that 〈ϕ∗, s(λ)〉 = 0 with
s(λ) = y + λ(v∗ − s). Therefore, s(λ) ∈ Π(ϕ) and, by definition of the orthogonal projection,
‖s− PΠϕ s‖ ≤ ‖s− s(λ)‖ ≤ λδ < δ which is a contradiction. If 〈ϕ∗,u∗〉 < 0 and 〈ϕ∗,v∗〉 < 0, we
apply the same reasoning on x and u∗. Therefore, Vδ ⊂ Wδ.

(ii) Wδ ⊂ Vδ: If ϕ∗ ∈ Wδ with ϕ∗ /∈ Vδ, we have either ‖x − PΠ(ϕ∗) x‖ < δ or ‖s − PΠ(ϕ∗) s‖ < δ.
Let us say that ‖x − PΠ(ϕ∗) x‖ < δ. Then, for w = x + δ (PΠ(ϕ∗) x−x)/‖PΠ(ϕ∗) x−x‖ ∈ B∗δ (x),

〈ϕ∗,x〉〈ϕ∗,w〉 = (〈ϕ∗,x〉)2
Ä
1− δ/‖PΠ(ϕ∗) x− x‖

ä
+ δ 〈ϕ∗,PΠ(ϕ∗) x〉 < 0. However, ϕ∗ ∈ Wδ and

〈ϕ∗,x〉〈ϕ∗, s〉 < 0, leading to 〈ϕ∗,w〉〈ϕ∗, s〉 > 0, which is a contradiction. �

E Theorem 3: Gaussian Matrices Provide BεSEs

The strategy for proving Theorem 3 will be to count the number of pairs of K-sparse signals
that are Euclidean distance δ apart. We will then apply the concentration results of Lemma 4
to demonstrate that the angles between these pairs are approximately preserved. We specifically
proceed by focusing on a single K-dimensional subspace (intersected with the unit sphere) and then
by applying a union bound to account for all possible subspaces.

Let T ⊂ {1, . . . , N} be an index set of size |T | = K, Σ∗(T ) = {w ∈ RN : suppw ⊂ T, ‖w‖2 =
1} be the sphere of unit vectors with support T . We first use again the fact that the sphere Σ∗(T )
can be δ-covered by a finite set of points QT,δ. That is, for any w ∈ Σ∗(T ), there exists a q ∈ QT,δ
such that w ∈ B∗δ (q) = Bδ(q) ∩ Σ∗T = {w′ ∈ Σ∗T : ‖w′ − q‖2 ≤ δ} [15]. Note that the size of QT,δ
is bounded by |QT,δ| ≤ Cδ = (3/δ)K .

Let ΦT be the matrix formed by the columns of Φ indexed by T and note that ΦTw = Φw.
Since ε ≥ 0 is given, then for all pairs of points x,y ∈ QT,δ, we have

P
( ∣∣∣ dHÄA(p), A(q)

ä
− dS(x,y)

∣∣∣ ≤ ε+
»

π
2K δ

)
≥ 1 − 2 (3

δ )2K e−2ε2M , (21)

for all p ∈ B∗δ (x) and q ∈ B∗δ (y). This follows from Lemma 4 with D = K, since ΦT is a Gaussian
matrix and by invoking the union bound, since there are

(Cδ
2

)
≤ C2

δ = (3/δ)2K such pairs x,y.

The bound (21) can be extended to all possible index sets T of size K via the union bound.
Specifically, for all T ⊂ {1, · · · , N} and all pairs of points x,y ∈ QT,δ, we have

P
(∣∣∣ dHÄA(p), A(q)

ä
− dS(x,y)

∣∣∣ ≤ ε+
»

π
2K δ

)
≥ 1 − 2 ( eNK )K (3

δ )2K e−2ε2M (22)

for all p ∈ B∗δ (x) and q ∈ B∗δ (y), since there are no more than
(N
K

)
≤ (eN/K)K possible T .
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To summarize, for any points on the sphere u,v ∈ SN−1 with |suppu∪ suppv| ≤ K, there exists
an index set T of size K such that u,v ∈ Σ∗(T ) and from (22) there exists two points x,y ∈ QT,δ
such that u ∈ B∗δ (x) and v ∈ B∗δ (y) with a probability exceeding 1 − 2 ( eNK )K (3

δ )2K e−2ε2M .
Furthermore, when this occurs we have∣∣∣ dHÄA(u), A(v)

ä
− dS(x,y)

∣∣∣ ≤ ε+
»

π
2K δ. (23)

To obtain our final bound, consider that u ∈ B∗δ (x) implies that π dS(u,x) ≤ 2 arcsin δ/2 ≤ πδ/2,
and dS(v,y) can be similarly bounded. Thus, dS(u,v) ≥ dS(x,y)− δ and dS(u,v) ≤ dS(x,y) + δ,
and (23) becomes ∣∣∣ dHÄA(u), A(v)

ä
− dS(u,v)

∣∣∣ ≤ ε+ (1 +
»

π
2K) δ. (24)

By bounding the probability of failure as 2 ( eNK )K (3
δ )2K e−2ε2M ≤ η, where 0 < η < 1, and setting

ε = (1 +
»

π
2K) δ, solving for M , we obtain

M ≥ 4
ε2

Ä
K log(9eN

K ) + 2K log(2(1+
√

2πK)
ε ) + log( 2

η )
ä
.

Since K ≥ 1, we have that 2(1 +
√

2πK) < 4
√

2πK, and thus the previous relation is satisfied if

M ≥ 4
ε2

Ä
K log(9eN

K ) + 2K log(4
√

2πK
ε ) + log( 2

η )
ä
,

= 4
ε2

Ä
K log(9eN) + 2K log(4

√
2π
ε ) + log( 2

η )
ä
,

= 4
ε2

Ä
K log(N) + 2K log(12

√
2πe
ε ) + log( 2

η )
ä
,

which can be further simplified to M ≥ 4
ε2

Ä
K log(N) + 2K log(50

ε ) + log( 2
η )
ä
.

F Lemma 5: Stability with Measurement Noise

In Lemma 5, since Φ ∼ NM×N (0, 1), each yi = (Φx)i follows a Gaussian distribution N (0, ‖x‖22),
and furthermore, since we have independent additive noise, zi = yi + ni = (Φx)i + ni follows the
Gaussian distriubtion N (0, ‖x‖22 + σ2).

We begin by bounding the probability that any noisy measurement zi has a different sign than
the original corresponding measurement yi, i.e., we bound p0 = P(ziyi < 0). This quantity is
interesting since M dH

Ä
An(x), A(x)

ä
follows a Binomial distribution with M trials and probability

of success p0 and thus we also have E
Ä
dH
Ä
An(x), A(x)

ää
= p0.

To solve for the bound, we compute

p0 =

∫
R

du P(ziyi < 0 | yi = u ) fyi(u) =

∫
R

du P(u2 + uni < 0) g(u; ‖x‖2),
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with the pdf fyi(t) = g(t;σ′) = 1√
2πt

exp(−t2/2σ′2). This leads to

p0 =

∫ ∞
0

du P(ni < −u) g(u; ‖x‖2) +

∫ 0

−∞
du P(ni > −u) g(u; ‖x‖2)

=

∫ ∞
0

du 2Q(u/σ) g(u; ‖x‖2) ≤
∫ ∞

0
du e−

u2

2σ2 g(u; ‖x‖2)

= 1√
2π‖x‖2

∫ ∞
0

du e
−1

2 (
(‖x‖22+σ

2)u2

σ2‖x‖2
2

)
= 1

2

σ»
‖x‖22 + σ2

,

where Q(u) =
∫∞
u dt g(t; 1) denotes the tail integral of the standard Gaussian distribution which is

bounded by Q(t) ≤ 1
2e
−t2/2 for t ≥ 0 (see for instance [67, Eq. (13.48)]).

Thus, we have p0 ≤ e(σ, ‖x‖2) = 1
2

σ√
‖x‖22+σ2

and, by applying the Chernoff-Hoeffding inequality

to the distribution of dH
Ä
An(x), A(x)

ä
,

P
î
M dH

Ä
An(x), A(x)

ä
> M e(σ, ‖x‖2) +Mε

ó
≤ P

î
M dH

Ä
An(x), A(x)

ä
> M p0 +Mε

ó
≤ e−2Mε2 ,

which proves the lemma.

G Corollary 2: Stability with Compressible Signals

The proof of Corollary 2 is as follows. Since x = xK + (x − xK) then Φx = ΦxK + n where
n = Φ(x − xK) is a random Gaussian vector. Thus A(x) = An(xK) where An is defined as in
Lemma 5. The vector n is also independent of ΦxK since the supports of xK and (x − xK) are
disjoint. Moreover, applying Lemma 6.1 of [13], we have that

‖n‖2 ≤
√
Mρ(x,K),

if 1√
M

Φ is a RIP(K, δK) matrix. Finally, the variance σ2 of each i.i.d. component ni of n can

be bounded by σ2 = En2
i = E‖n‖22/M ≤ ρ(x,K), thus the result follows from Lemma 5 with the

bound e(σ, ‖xK‖2) ≤ 1
2σ/‖xK‖2 ≤

ρ(x,K)
2‖xK‖2 .
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